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1. Self-regulated galaxy evolution 

2. Cosmological hydrodynamical simulations 

3. The EAGLE project 

a) What is it? 

b) What do the simulations look like? 

c) Some examples of things we learnt. 
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Self-regulated galaxy formation 

• Feedback too weak compared to 
accretion 

Gas density increases 

Star formation /BH growth rate increases 

Feedback increases 

• Feedback too strong compared to 
accretion 

Gas density decreases 

Star formation/BH growth rate decreases 

Feedback decreases 



• Galaxies tend to a state of quasi-
equilibrium (outflow ~ inflow), when 
averaged over suitable length and time 
scales 

 Existence of simple scaling relations 

• Outflow reacts to inflow 

 Gas accretion drives galaxy evolution 

Consequences of self-regulated GF 



• Gas accretion rate is mainly “smooth”  

 small scatter in scaling relations  

• Gas accretion rates and hence galaxy 
properties are a function of 

– Halo mass 

– Redshift 

– Environment (e.g. centrals vs. satellites) 

• Nature of (halo) gas accretion changes at 
Mhalo ~ 1012 M

  (cold-mode  hot-mode) 

May expect bi-modality in dominant feedback 
channel and hence in galaxy properties 

 

Consequences of accretion-driven GF 



Cold mode 

• Bimodal temperature 
distribution (e.g. Keres+, Dekel+) 

• Hot accretion more important in 
massive haloes (> 1012 M


) Van de Voort, JS+ (2011a)  

Two modes of gas accretion 



Consequences of self-regulated GF 

• SF feedback efficiency 

 SFR, and hence M*, inversely proportional to 
efficiency of SF feedback (in order to generate the 
same outflow rate) 

M*-Mhalo relation cannot be predicted unless the 
radiative losses in the ISM can be predicted  

• AGN feedback efficiency 

 BH accretion rate, and hence MBH, inversely 
proportional to efficiency of AGN feedback 

MBH-M* relation difficult to predict from first principles 

 SFR (and other galaxy properties except MBH) 

independent of AGN feedback efficiency 

Outflow rate rate is determined by inflow rate. Hence, 
it is independent of:  



Varying the efficiency of AGN feedback 

Booth & JS (2009, 2010)  



Cosmological hydro simulations 

• Evolution from z>~100 to z ~< 10 of a 
representative part of the universe 

• Expansion solved analytically and scaled out 

• Initial conditions from the CMB & LSS  

• Boundary conditions: periodic 

• Components: cold dark matter, gas, stars, 
radiation (optically thin) 

• Discretizaton: time, mass (SPH) or length 
(AMR) 

• Gravity and hydro solvers (and MHD, RT, …) 

• Sub-grid modules are a crucial part of the 
game 
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• Resolving the warm phase requires: 

- Particle mass << 107 M
 

- Spatial resolution << 1 kpc 

• Resolving gas with nH~10 cm-3 and T~102 K requires:  

- particle mass << 103 M

 

- spatial resolution << 10 pc 

- Radiative transfer 

- Complex chemistry 

• Convergence requires resolving the Jeans scales: 

Basic resolution requirements 



Galaxies in hydro simulations 

• For many years galaxies in hydro 
simulations were: 

– Too massive 

– Too compact 

– Too old 

– Too bulgy/elliptical 

• This changed thanks mainly to 

– More efficient subgrid implementations    
of feedback from star formation 

– Inclusion of AGN feedback 



• Reality: Supernovae and accreting black 
holes inject lots of energy in very little mass 

 High temperatures 

 Long cooling times 

 Efficient feedback 

• Simulations: Energy injected in lots of mass 

 Low heating temperatures 

 Short cooling times 

 Inefficient feedback 

 

The challenge for feedback prescriptions 



Driving winds: subgrid recipes 

• Multiphase particles  
     (e.g. Scannapieco, Murante, Aumer/White) 

• Suppress cooling by hand  
     (e.g. Thacker, Stinson/Brook/Gibson/Governato/Maccio/Mayer/Wadsley) 

• Inject momentum (i.e. kinetic feedback) and 
suppress hydrodynamical interactions by 
hand  

     (e.g. Springel/Hernquist, Davé/Oppenheimer, Dubois/Teyssier, Viel,  

      Vogelsberger) 

• Inject sufficient energy per event  
     (e.g. Booth & JS ‘09, Dalla Vecchia & JS ‘12, JS+ ’15, Keller/Wadsley) 

 

 

 

 



Implementing thermal FB: requirements 

• FB only efficient if heated resolution elements 
expand faster than they cool radiatively: 

tc >> ts = h/cs 

where h is the spatial resolution 

•   Required T depends on density and resolution 

Dalla Vecchia & JS (2012) 

• Stochastic implementation: Fix ΔT, heating 
probability determined by overall efficiency 
parameter that requires calibration 





EAGLE Starting points 
• Strong outflows are necessary to obtain agreement 

with a diverse set of observations 

• Maximum in stellar fraction – halo mass relation 
suggests that two types of feedback are needed 

• Cosmological simulations cannot resolve the cold 
ISM and hence cannot predict stellar and black hole 
masses from first principles 

• Calibration necessary  

 require subgrid feedback that avoids numerical 
overcooling but whose efficiency can be 
controlled 

 need to compare to relevant observations 
 need to be clear about calibration input 
 need to keep it simple 



EAGLE:  

Evolution and Assembly of GaLaxies and their Environments 

• Volumes of 25 - 100 Mpc and zooms 

• Particle mass 105 – 106 M

 (smaller for 

zooms), resolves warm ISM 

• Modern SPH 

• Includes feedback from stars and AGN 
(1 type each) 

• Subgrid recipes depend only on local 
gas properties 

• Hydro and cooling never turned off 

• Winds develop without predetermined 
mass loading or velocity 

• Stellar feedback efficiency calibrated to 
z = 0 mass function and galaxy sizes 

• AGN feedback efficiency calibrated to 

    z = 0 BH mass – stellar mass relation  

• Many different models, spin offs 
 



Images by Trayford/McAlpine 



JS et al. (2015) 



A movie of cosmic evolution 

../Videos/skirt_ugr_galaxy.mp4


Galaxy formation efficiency 

JS et al. (2015) 



Evolution of the mass function 

Furlong et al. (2015a)  



Evolution of the mass function 

Furlong et al. (2015a)  



M200 = 1012 M

 

100 kpc 

Crain, JS et al. (2015)  



Many ways to fit the mass function 

Crain, JS et al. (2015)  



Sizes 

Crain, JS et al. (2015)  



Sizes: Evolution 

Furlong et al. (2016) 



Colour-magnitude diagram: EAGLE vs GAMA 

Trayford et al. (2015) SPSS: Bruzual & Charlot ’93 
Extinction: Charlot & Fall 
Flux limit: GAMA 



Alpha enhancement of early types 

Segers, JS, et al. (2016) 



ISM phases 

Lagos, Theuns, JS et al. (2015b) 

H2 H I 



Neutral gas fraction 

Bahe et al. (2015) 



HI: Environmental dependence 

Marasco, Crain, JS et al. (2016) 

Cat13: GASS survey with SDSS group catalog (Catinella+ 2013) 



Intergalactic metals at z~3.5:  
A like-for-like comparison 

Turner, JS et al. (2016) 

EAGLE winds may not entrain enough cold gas 



Galaxy bimodality and BH mass 

Bower, JS et al. (in prep) 



BH – Stellar mass relation 

Bower, JS et al. (in prep) 



Are the winds buoyant? 

Bower, JS et al. (in prep) 



EAGLE Zooms: The APOSTLE project 

Sawala et al. (2016) 



APOSTLE: No missing satellites 

Sawala et al. (2016) 



APOSTLE: Not too big to fail 

Sawala et al. (2016) 



BAHAMAS project 

McCarthy, JS, Bird, Le Brun (2016) 

Optical: 
Galaxy stellar mass function 

X-ray: 
Cluster gas fraction 

Calibration:  
Constant velocity of fully 
coupled kinetic stellar 
feedback 

Calibration: 
Temperature jump of AGN 
thermal feedback events 



Conclusions: 1/2 

• Galaxy formation is self-regulated. Feedback 
is critical. 

• Cannot predict stellar and black hole masses 
precisely, feedback needs to be calibrated.  

• Unrealistic models can match the relation 
between stellar and halo mass. 

• A large and diverse set of observations are 
reproduced once the z=0 mass function and 
sizes match the data (but not everything 
works!) 

• Simple, natural feedback recipes suffice. 



Conclusions: 2/2 

• Alpha enhancement due to quenching of 
star formation by AGN 

• Lack of buoyancy of wind fluid quenches 
stellar feedback in hot, hydrostatic haloes. 

• Black hole growth and galaxy bimodality are 
triggered by stellar feedback becoming 
inefficient. 

• Feedback from reionization and star 
formation solves the “missing satellite” and 
the “too big to fail” problems. 



What is next? 

• Higher-resolution enables simulating a 
colder interstellar gas phase 

• Enables formation of thinner disc galaxies 

• Subgrid models kick in at smaller scales 

• Feedback prescriptions can capture more 
physics 

• Can start to ask key questions like:  

   What drives outflows? 

• Already possible in zooms of individual 
galaxies 


