Meet RobERt, the dreaming detective for exoplanet atmospheres
National Astronomy Meeting press release
RAS PR 16/34 (NAM 08)
24 June 2016

Monet EarthMachine-learning techniques that mimic human recognition and dreaming processes are being deployed in the search for habitable worlds beyond our solar system. A deep belief neural network, called RobERt (Robotic Exoplanet Recognition), has been developed by astronomers at UCL to sift through detections of light emanating from distant planetary systems and retrieve spectral information about the gases present in the exoplanet atmospheres. RobERt will be presented at the National Astronomy Meeting (NAM) 2016 in Nottingham by Dr Ingo Waldmann on Tuesday 28th June.

“Different types of molecules absorb and emit light at specific wavelengths, embedding a unique pattern of lines within the electromagnetic spectrum,” explained Dr Waldmann, who leads RobERt’s development team. “We can take light that has been filtered through an exoplanet’s atmosphere or reflected from its cloud-tops, split it like a rainbow and then pick out the ‘fingerprint’ of features associated with the different molecules or gases. Human brains are really good at finding these patterns in spectra and label them from experience, but it’s a really time consuming job and there will be huge amounts of data.
We built RobERt to independently learn from examples and to build on his own experiences. This way, like a seasoned astronomer or a detective, RobERt has a pretty good feeling for what molecules are inside a spectrum and which are the most promising data for more detailed analysis. But what usually takes days or weeks takes RobERt mere seconds.”

Deep belief neural networks, or DBNs, were developed more than a decade ago and are commonly used for speech recognition, Internet searches and tracking customer behaviour. RobERt’s DBN has three layers of unit processors, or ‘neurons’. Information is fed into a bottom layer of 500 neurons, which make an initial filter of the data and pass a subset up to the second layer. Here, 200 neurons refine the selection and pass data up to a third layer of 50 neurons to make the final identification of the gases most likely to be present.

To prepare RobERt for his challenge, Waldmann and colleagues at UCL created a total of 85,750 simulated spectra, covering five different types of exoplanet ranging from GJ1214b, a potential “ocean planet”, to WASP-12, a hot Jupiter orbiting very close to its star. Each spectrum in the training set contained the fingerprint of a single gas species. RobERt’s learning progress was tested at intervals during the training with ‘control’ spectra. At the end of the training phase, RobERt had a recognition accuracy of 99.7%.

“RobERt has learned to take into account factors such as noise, restricted wavelength ranges and mixtures of gases,” said Waldmann. “He can pick out components such as water and methane in a mixed atmosphere with a high probability, even when the input comes from the limited wavebands that most space instruments provide and when it contains overlapping features.”

RobERt’s DBN can also be reversed so that instead of analysing data fed into the system, he can enter a ‘dreaming state’ in which he can generate full spectra based on his experiences.

“Robots really do dream. We can ask RobERt to dream up what he thinks a water spectrum will look like, and he’s proved very accurate,” said Waldmann. “This dreaming ability has been very useful when trying to identify features in incomplete data. RobERt can use his dream state to fill in the gaps. The James Webb Space Telescope, due for launch in 2018, will tell as more about the atmospheres of exoplanets, and new facilities like Twinkle or ARIEL will be coming online over the next decade that are specifically tailored to characterising the atmospheres of exoplanets. The amount of data these missions will provide will be breathtaking. RobERt will play an invaluable role in helping us to analyse data from these missions and find out what these distant worlds are really like.”

Media Contacts

Dr Robert Massey
Deputy Executive Director
Royal Astronomical Society
Tel: +44 (0)20 7292 3979
Mob: +44 (0)7802 877 699
This email address is being protected from spambots. You need JavaScript enabled to view it.

Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
This email address is being protected from spambots. You need JavaScript enabled to view it.

Science Contact

Dr Ingo Waldmann
Department of Physics and Astronomy,
University College London
This email address is being protected from spambots. You need JavaScript enabled to view it.

A neural network’s dream of Earth. Similar to RobERt dreaming of exoplanet spectra, this neural network (Gatys et al. 2015) was trained to dream in the style of a Monet painting. Credit: Waldmann/UCL/Gatys

Further Information
Waldmann, I.P., Dreaming of Atmospheres, The Astrophysical Journal, 820:107 (8pp), 1 April 2016

Notes for editors

The RAS National Astronomy Meeting 2016 (NAM 2016, takes place this year at the University of Nottingham from 27 June to 1 July. NAM 2016 brings together more than 550 space scientists and astronomers to discuss the latest research in their respective fields. The conference is principally sponsored by the Royal Astronomical Society and the Science and Technology Facilities Council. Follow the conference on Twitter via @rasnam2016

The University of Nottingham ( has 43,000 students and is ‘the nearest Britain has to a truly global university, with a “distinct” approach to internationalisation, which rests on those full-scale campuses in China and Malaysia, as well as a large presence in its home city.’ (Times Good University Guide 2016). It is also one of the most popular universities in the UK among graduate employers and the winner of ‘Outstanding Support for Early Career Researchers’ at the Times Higher Education Awards 2015. It is ranked in the world’s top 75 by the QS World University Rankings 2015/16, and 8th in the UK by research power according to the Research Excellence Framework 2014. It has been voted the world’s greenest campus for four years running, according to Greenmetrics Ranking of World Universities.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future.

The Science and Technology Facilities Council (STFC, is keeping the UK at the forefront of international science and has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. STFC's Astronomy and Space Science programme provides support for a wide range of facilities, research groups and individuals in order to investigate some of the highest priority questions in astrophysics, cosmology and solar system science. STFC's astronomy and space science programme is delivered through grant funding for research activities, and also through support of technical activities at STFC's UK Astronomy Technology Centre and RAL Space at the Rutherford Appleton Laboratory. STFC also supports UK astronomy through the international European Southern Observatory. Follow STFC on Twitter via @stfc_matters

The Royal Astronomical Society (RAS,, founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Follow the RAS on Twitter via @royalastrosoc

About UCL (University College London)
UCL was founded in 1826. We were the first English university established after Oxford and Cambridge, the first to open up university education to those previously excluded from it, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables. UCL currently has over 35,000 students from 150 countries and over 11,000 staff. Our annual income is more than £1 billion. | Follow us on Twitter @uclnews | Watch our YouTube channel